

Date Planned ://	Daily Tutorial Sheet-7	Expected Duration : 90 Min
Actual Date of Attempt ://_	Level-2	Exact Duration :

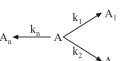
86. The plot between concentration versus time for a zero order reaction is represented by :

- When the same reaction conditions, initial concentration of 1.386 mol dm $^{-3}$ of a substance becomes half in 40 s and 20 s through first order and zero order kinetics respectively. Ratio $\left(\frac{k_1}{k_0}\right)$ of the rate
 - constants for first order $(k_{\mbox{\tiny 1}})$ and zero order $(k_{\mbox{\tiny 0}})$ of the reaction will be:

(A) $0.5 \text{ mol}^{-1} \text{dm}^{-3}$

(B) 1.0mol dm^{-3}

(C) $1.5 \,\mathrm{mol} \,\mathrm{dm}^{-3}$


- **(D)** $2.0 \,\mathrm{mol}^{-1} \mathrm{dm}^3$
- **88.** For a reaction, $A+2B \longrightarrow C$, rate is given by $+\frac{d[C]}{dt}=k[A][B]$. Hence, the order of the reaction is :
 - (A) 3

(A)

- 3)
- **c)** 1
- **(D)**
- **89.** Which represents first order reaction out of I, II and III?

90. For a 1st order decomposition,

overall k will be given by:

(A) $k = k_1 + k_2 + + k_n$

(B) $k = (k_1 + k_2 + ... + k_n) / n$

(C) $k = k_1 \times k_2 \times ... \times k_n$

- **(D)** none of these
- **91.** For a first order reaction with rate constant 'k' and initial concentration 'a', the half-life period is given by:
 - (A) $\frac{\ln 2}{k}$
- **(B)** $\frac{1}{16}$
- (C) $\frac{3}{2k_{1}a^{2}}$
- **D)** None of these
- **92.** The rate constant of a first order reaction is $6.9 \times 10^{-3} \, \text{s}^{-1}$. How much time will it take to reduce the initial concentration to its $1/8^{th}$ value?
 - **(A)** 100 s
- **(B)** 200 s
- **(C)** 300 s
- **(D)** 400 s

- For the following elementary homogeneous reaction, the unit of rate constant is : $A + B \xrightarrow{k} C$ **93**.
 - (A) $\mathrm{mol}^{-1}\mathrm{Ls}^{-1}$
- \mathbf{s}^{-1} **(B)**
- (C)
- $mol\ L^{-1}s^{-1}$ (D)
- What is the two third life of a first order reaction having $\,k=5.48\times 10^{-14}\,s^{-1}\,?\,$ 94.
 - (A)
- 2.01×10^{11} s **(B)** $\sim 2.01 \times 10^{13}$ s **(C)** 8.08×10^{13} s **(D)**
- 16.04×10^{11} s
- A first order reaction is 75% complete after 32 min. When was 50% of the reaction completed? **95**.
 - (A) 16 min
- **(B)** 8 min
- (C) 4 min
- **(D)** 32 min